Methanogenesis Coupled Bioremediation of Hydrocarbon Contaminated Soil and Groundwater

Krisztián Laczi¹, Jacob Manyiwa Shume¹, Attila Bodor², Naila Bounedjoum¹, György Erik Vincze¹, Katalin Perei¹, Tamás Kovács³, Gábor Rákhely¹,²

¹Department of Biotechnology, University of Szeged, 52. Közép fasor, Szeged, H-6726, Hungary
²Institute of Biophysics, Biological Research Centre, 62. Temesvári krt. Szeged, H-6726, Hungary
³Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corp., 2. Kertváros u., Pécs, H-7632, Hungary
rakhely@brc.hu

Extended Abstract

At the moment, the global economy is based on petrochemical products; hence hydrocarbons are among the main pollutants all over the world. Hydrocarbon contaminations pose a serious threat to the environment and human health. Therefore, removal of such pollutants is among the top environmental challenges. A number of biotechnologies have been developed for aerobic oxidation of various hydrocarbons, however, remediation under anoxic conditions such as in the deep soil layers is still a big challenge requiring economic solutions. The innate microflora might have the metabolic capacity to utilize hydrocarbons as a carbon and energy source. However, under anaerobic conditions, alternative, expensive electron acceptors are required, or in their absence, a portion of the mineralized hydrocarbons can be converted into methane, thus can be collected as an energy carrier and can decrease the costs of remediation.

In this study, we investigated an area which has been used as an army airport in the last. The remediation of the area has already been attempted but – likely due to the groundwater flows – the pollution appeared again. The area was re-monitored: samples (12) were taken up to the groundwater level (7.5 - 8m) and were chemically and micro-biologically characterized. Metagenomic analyses revealed that the most abundant genera were Smithella (16%) alongside with Rhodoferax (9%). The members of these two genera were recognized as alkane [1] and aromatics [2] degraders respectively. Methanosaeta (3%) and Methanoregula (6%) were also found among the most abundant genera. Applying a binning method, the genomes belonging to the genera above were recovered with the exception of Methanosaeta. In the reconstructed genome of Smithella sp., we identified an alkylsuccinate synthase gene that participates in the activation of aliphatic hydrocarbons under anaerobic conditions [3]. Genes participating in the degradation of aromatic compounds were also found in the Rhodoferax genome. Batch fermentation experiments showed that the enrichment culture derived from this soil sample was able to convert hydrocarbons into methane, therefore it can be used for microbial enhanced energy recovery.

Acknowledgements

The project was supported by the European Union and the Hungarian State (grant agreement No.: EFOP-3.6.2-16-2017-00010).

References
